Chemical Microscopy Studies of Peat from the Arctic Coastal Plain

Heidi Bialk
GREF Presentation
June 2003

Thaw Lake Basin: Barrow, Alaska

Overview ☐ Introduction **Background** ☐ Project Goals **Objectives Hypotheses** ☐ Experimental Methods Sample Collection and Sample Preparation □ Preliminary Results Data Collection: XANES and Microscop Summary of Preliminary Results □ Conclusions > Future Directions □ Acknowledgements Whale Bone: Barrow, Alaska

Background: Why the Arctic Coastal Plain?

- □ Soils of the tundra biome are estimated to contain 13% of the world soil C pool
- □ Potential impact of climate warming on carbon accumulation in the arctic tundra has multiple scenarios.
- □ An improved understanding of the chemical nature of peat is needed in order to better predict impacts of climate change.

Age Classification of Basins

Photos by Dr. Wendy Eisner

Background Cont'd: Landsat-7 Imagery of the Coastal Plain

http://k2.gissa.uc.edu/~weisner/thawpage files/frame.htm

Background Cont'd

- ☐ There have been several studies on the progression of events within the thaw lake cycle (Billings and Peterson., 1980; Eisner., 1998a; Eisner and Peterson., 1998b).
- ☐ CPMAS-NMR used as a tool to characterize whole peat samples along with soluble extracts from the Arctic (Ping et al., 2001)
- ☐ Spectra do not reveal organic origins.
- Our approach will be similar, focusing on whole insoluble residues using synchrotron x-ray based methods that include microscopy.
- chemical imaging

Objectives

- Bridge a gap in the current understanding of peat mats from the arctic coastal plain
- Quantify fresh source material in peat mats and assess the extent of decomposition
- ➤ Estimate the amount of chemically identifiable cell wall material of the following origin:
 - √ vascular plants through a chemical mapping based on lignin
 - ✓ moss, fungal, and microbial cell wall material

Dominant Vegetation

Permafrost

Main Hypotheses

- ☐ Chemical imaging will distinguish detritus of a vascular origin vs. detritus of an avascular origin via a chemical mapping of lignin. (Kogel-Knaber., 2002)
- ☐ There are chemical characteristics of fungal and bacterial cell wall material that will allow further distinction of detritus origin.
- ☐ Chemical imaging will reflect an increase in the degree of decomposition of detritus with depth.

 (Dai et al., 2001)

Dominant Vegetation

Permafrost

Synchrotron X-ray Radiation: What is it?

Synchrotron X-ray Analysis

Bulk XANES

Mark II Grasshopper

Port 103

Averages over an entire sample

Chemical Microscopy Mephisto

Selective Electronic Imaging

Schematic of Chemical Microscopy (Mephisto)

Brief Overview of X-ray Absorption

Quantized photon at C-K edge

X-ray Absorption: A Model Chemical Signature

Energy (eV)

Sample Collection: Vegetation

Table 1. Parent Vegetation from drained thaw lake basins in Barrow, Alaska, at 71 degrees N latitude

Lake Site	Age	Dominant Vegetation (other species present)
Footprint Lake Basin	young	Arctophila fulva (graminoid), Caliergon (moss)
Golf Course Basin	medium	Eriophorum augustifolum (graminoid)
TC Basin	old	Carex aquatilus (graminoid), Dichranum elongatum and Sphagnum (mosses)
RI Basin	ancient	Eriophorum vaginatum (graminoid)

Sample Collection Cont'd

□ Peat Cores

- ☐ Microbial Cell Wall Isolation (Dufrene et al., 1997; Dengis et al., 1995)
- Bacteria: Archaea

Rationale for Sample Preparation

Sample Preparation

- ☐ Soft X-ray Analysis in Bulk Mode (Port 103)
- > Samples ground and embedded into indium foil
- Coated with a 7 angstrom Pt-Pd alloy film
- Eliminates charging
- □ Soft X-ray Analysis in Microscopic Mode
- Samples fixed in a Polybed-812 & Spurr's carbon based resin
- Sectioned to 8 micrometers to minimize sample charging
- Smooth sample required for quality imaging

Sample Preparation: Microscopy

Bulk Data Collection: XANES Spectra of Cellulose and Lignin

Data Collection: XANES Spectrum of Arctic Peat at the Carbon K-edge

Alaskan Peat

Data Collection: XANES Spectrum of *Eriophorum augustifolum* at the Carbon K-edge

Carbon K-edge (Eriophorum Augustifolum)

Key Points from XANES Analysis

Sample Preparation: Microscopy

Data Collection: PEEM Microscopy

Data Collection: Soft X-ray Microscopy of Isolated Peat Region at the Carbon K-edge

Summary of Preliminary Results

- □ Bulk soft x-ray analysis at the carbon Kedge distinguishes between fresh plant material and peat.
- Chemical microscopy is feasible due to a chemical contrast between embedding resin and peat.
- Changes in methodology have improved data quality.
- ☐ Chemical microscopy will provide insight into the nature of peat originating from the arctic coastal plain.

Future Directions

- ☐ Complete bulk spectra of parent vegetation
- Collect bulk and microscopic images at various depth intervals along a peat core
- ☐ Utilize IR microscopy techniques
- Analyze and interpret spectra

Acknowledgements

Collaborators:

- -Dr. Bockheim (UW-Madison)
- -Dr. DeStassio (SRC)
- -Dr. Xiaoyan Dai (post-doc)
- -Brad Frazier (SRC)

Funding

- Global Research
Environmental Fellowship
(GREF)

Technical Support:

- -Dr. Kim Peterson (UA- Fairbanks)
- -Randy Massey (UW-Madison)
- -Dr. Russ Spears (UW-Madison)
- -Dan Wallace (SRC)
- -Adam Hitchcock (SRC)

Other

-Barrow Arctic Consortium (BASC)

Background: How Do Thaw Lakes Form?

Billings and Peterson, 1980.

Sample Preparation: Chemical Microscopy

Sample Collection

□Pollen

- proxy for vegetation used in paleoecological research
- Eriophorum scheuzeri, Arctophila fulva, Carex aquatilus

Data Collection: XANES Spectrum of Arctic Peat at the Carbon K-edge

Alaskan Peat

Data Analysis: Peak Deconvolution

Relative Energy (eV)

Data Analysis: Peak Assignments with Model Compounds

Energy (eV)

Vairavamurthy et al., 2002

Data Collection: Soft X-ray Microscopy of Isolated Peat Region at the Nitrogen K-edge

Double Normalization

```
Intensity = {(Sample Unknown TEY)(Nickel Mesh)} {(Silicon Chip TEY)(Nickel Mesh)}
```

☐ Fungal Cell Walls

- > Chitin
- > Cellulose
- Polysaccharides
- Amino sugars

□ Bacterial Cell Walls

- Lipids
- Lipopolysaccharides& polysaccharides
- Peptidoglycan
- > Alkyl macromolecules
- Amino sugars
- ✓ N-acetyl muramic acid

Potential Pitfalls

□ Sample Collection

decomposition may not necessarily increase with depth due to fine root penetration of the peat mat and cryoturbation

□ Data Analysis

difficulty in obtaining quality data, sample charging may limit confidence in our quantification

Other Methods in Peat Characterization

- Amino sugar analysis (bacterial vs fungal cell wall contributions)
- ☐ Isomer analysis with GC/MS
- □ Sulfur XANES distinguish bacterial cell wall material?
- ☐ Lignin extraction in a mix of humic extracts

Expected Results

- □ Relationship between amount of fresh material vs depth/age
- depth and age may not be linear
- fresh material vs time may be more appropriate

Research Timetable

2003	2004	2005
 -Cell Wall Isolation - Soft X-ray spectroscopy of parent vegetation and cell wall material - Write NSF proposal - Write and submit publication on initial results 	-Chem. Microscopy of Peat - Pollen Isolation and Analysis -Write and submit publication on those findings - Continued analysis of core peat sample	- Complete thesis publications and defend thesis

